These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immediate reconstruction of massive cranio-orbito-facial defects with allogeneic and alloplastic matrices in baboons. Author: Ripamonti U, Petit JC, Moehl T, van den Heever B, van Wyk J. Journal: J Craniomaxillofac Surg; 1993 Oct; 21(7):302-8. PubMed ID: 8263216. Abstract: 40 cranio-orbito-facial osseous defects were created in 20 adult male baboons (Papio ursinus) to test the effectiveness of an allogeneic and an alloplastic matrix implant for the functional and morphological repair of the disassembled craniofacial complex. In each animal, one defect was reconstructed with a craniofacial bone segment harvested from donor adult baboons, and processed so as to obtain autolysed antigen-extracted allogeneic (AAA) bone matrix, preserving the bone morphogenetic protein (BMP) activity essential for bone induction. The contralateral defect was implanted with spherical macrobeads of polymethylmethacrylate (PMMA) coated with poly-2-hydroxyethylmethacrylate (PHEMA), and sintered into a porous molded implant, replicating the structural anatomy of the avulsed osseous segment. Histological analysis was carried out on undecalcified and decalcified bone sections prepared from specimens harvested at 3, 6 and 12 months after surgery. In AAA bone, the morphogenetic response was characterized by vascular invasion and mesenchymal cell aggregation after partial resorption of the implanted matrix. This was followed by bone deposition at the osteotomy interfaces and within the medullary spaces of the implanted AAA bone. Although bone ingrowth did occur in some PMMA/PHEMA specimens, the majority of implants showed fibrous union at the recipient interfaces. The limited bone ingrowth may be related to narrow interconnections between larger porous spaces after chemical synthesis of the two polymeric components. Osteogenesis in AAA bone appeared consistent with osteoconductive invasion from the viable bone at the recipient interfaces. In addition, the finding of a delicate trabecular-like bone, appositional to the central areas of the implanted matrix, suggests bone formation by induction.[Abstract] [Full Text] [Related] [New Search]