These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Morphological differentiation of neuropeptide Y neurons in aggregate cultures of dissociated fetal cortical cells: a model system for glia-neuron paracrine interactions. Author: Barnea A, Anthony E, Lu G, Cho G. Journal: Brain Res; 1993 Oct 22; 625(2):313-22. PubMed ID: 8275313. Abstract: The temporal changes in the morphological profiles of neuropeptide Y (NPY) neurons and their topographical relationship with glial cells (astrocytes) were characterized in aggregate cultures derived from fetal cortical tissue using immunocytochemical procedures. On day 6 of culture, structures labelled with NPY antibodies were small and uneven in size but many resembled neuronal cell bodies. On day 14, neuronal perikarya were well defined and several morphological types of NPY neurons could be distinguished most of which gave rise to beaded processes: unipolar or multipolar bitufted neurons whose processes branch in close proximity to the cell body; bipolar neurons; and multipolar neurons. On day 23, heavily punctate and asymmetrically labelled cell bodies were dispersed throughout the aggregate; neuronal processes were less conspicuous. At 14 and 23 days, cells expressing glial fibrillary acidic protein (GFAP) and neuronal specific enolase (NSE) were abundantly distributed throughout the aggregate. Using a double immunoreaction on 14-day-old aggregates revealed that GFAP+ cells and their processes were in close apposition to and engulfing the NPY neurons. Thus, dissociated fetal NPY neurons undergo morphological differentiation in culture along with astrocytes (GFAP+) and other neuronal cell types (NSE+). Based on the topographical association of astrocytes and neurons, particularly NPY neurons, we propose that the aggregate culture system can serve as a model to study the role of paracrine interactions in the regulation of the expression of NPY.[Abstract] [Full Text] [Related] [New Search]