These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder.
    Author: Canessa M, Labarca P, Leaf A.
    Journal: J Membr Biol; 1976 Dec 25; 30(1):65-77. PubMed ID: 827615.
    Abstract:
    The possibility that sodium from the serosal bathing medium "back diffuses" into the active sodium transport pool within the mucosal epithelial cell of the isolated toad bladder was examined by determining the effect on the metabolism of the tissue of removing sodium from the serosal medium. It was expected that if recycling of serosal sodium did occur through the active transepithelial transport pathway of the isolated toad bladder, removal of sodium from the serosal medium would reduce the rate of CO2 production by the tissue and enhance of stoichiometric ratio of sodium ions transported across the bladder per molecula of sodium transport dependent CO2 produced simultaneously by the bladder (JNa/JCO2). The data revealed no significant change in this ratio (17.19 with serosal sodium and 16.13 after replacing serosal sodium with choline). Further, when transepithelial sodium transport was inhibited (a) by adding amiloride to the mucosal medium, or (b) by removing sodium from the mucosal medium, subsequent removal of sodium from the serosal medium, or (c) addition of ouabain failed to depress the basal rate of CO2 production by the bladder [(a)rate of basal, nontransport related, CO2 production (JbCO2) equals 1.54 +/- 0.52 with serosal sodium and 1.54 +/- 0.37 without serosal sodium; (b) Jb CO2 equals 2.18 +/- 0.21 with serosal sodium and 2.09 +/- 0.21 without serosal sodium; (c) 1.14 +/- 0.26 without ouabain and 1.13 +/- 0.25 with ouabain; unite of JbCO2 are nmoles mg d.w.-1 min-1]. The results support the hypothesis that little, if any, recycling of serosal sodium occurs in the total bladder.
    [Abstract] [Full Text] [Related] [New Search]