These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isoform-specific regulation of myocardial Na,K-ATPase alpha-subunit in congestive heart failure. Role of norepinephrine.
    Author: Kim CH, Fan TH, Kelly PF, Himura Y, Delehanty JM, Hang CL, Liang CS.
    Journal: Circulation; 1994 Jan; 89(1):313-20. PubMed ID: 8281663.
    Abstract:
    BACKGROUND: Myocardial ouabain-binding sites and Na,K-ATPase activity are reduced in congestive heart failure (CHF), but the mechanisms by which CHF reduces the Na,K-ATPase remain unknown. We proposed to investigate whether the changes are accompanied by isoform-specific reductions of the Na,K-ATPase alpha-subunit proteins in CHF and whether similar changes could be produced by exogenous norepinephrine administration. METHODS AND RESULTS: CHF was induced in dogs by rapid ventricular pacing at a rate of 225 beats per minute for 8 weeks (protocol 1). A second group of dogs were paced at 100 beats per minute and served as controls. In protocol 2, norepinephrine was infused in normal dogs using a subcutaneous osmotic minipump for 8 weeks. The control dogs received normal saline through the pump. Animals were studied after 8 weeks of pacing or norepinephrine infusion. After the baseline hemodynamics and interstitial norepinephrine concentration had been obtained, the hearts were removed for measuring [3H]ouabain-binding sites and Na,K-ATPase alpha-subunit proteins using isoform-specific monoclonal antibodies. RESULTS: Myocardial [3H]ouabain-binding sites were reduced in dogs with CHF and chronic norepinephrine infusion. The Western blot analysis showed that adult canine hearts possess both alpha 1 and alpha 3 isoforms of the Na,K-ATPase alpha-subunit but not the alpha 2 isoform protein. CHF and NE infusion had no effect on the Na,K-ATPase alpha 1-subunit protein but did reduce the alpha 3 isoform protein significantly. In addition, there was a significant inverse correlation between the amount of myocardial alpha 3 isoform protein and interstitial norepinephrine content in the dogs. In contrast, the specific activity of the sarcolemmal marker 5'-nucleotidase did not differ among the groups of animals. CONCLUSIONS: The reduction of myocardial Na,K-ATPase in CHF is limited to the alpha 3 isoform. Furthermore, because similar changes in myocardial ouabain-binding sites and Na,K-ATPase alpha 3 isoform were produced by chronic norepinephrine infusion, the decrease in the Na,K-ATPase in CHF is most likely mediated via excess sympathetic stimulation.
    [Abstract] [Full Text] [Related] [New Search]