These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of interleukin-1 and tumor necrosis factor-alpha induced granulocyte-macrophage colony-stimulating factor gene expression: potential involvement of arachidonic acid metabolism.
    Author: Rizzo MT, Boswell HS.
    Journal: Exp Hematol; 1994 Jan; 22(1):87-94. PubMed ID: 8282065.
    Abstract:
    Signal transduction pathways evoked by interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) to stimulate expression of other cytokines in mesenchymal cells are not clearly understood. Stimulation of the murine bone marrow stromal cell line +/(+)-1.LDA 11 with IL-1 (500 U/ml) in combination with TNF-alpha (500 U/ml) (IL-1 plus TNF-alpha) induced expression of c-jun mRNA as well as granulocyte-macrophage colony stimulating factor (GM-CSF) mRNA. We investigated the possibility that arachidonic acid metabolites, acting through protein kinase C (PKC) and perhaps also through the PKC-responsive transcription factor c-jun/AP-1, may be responsible for regulating GM-CSF transcription in these stromal cells. Expression of GM-CSF mRNA was preceded by IL-1 plus TNF-alpha induced arachidonate release (assayed using the 3H-derivative). Pretreatment of cells with the phospholipase A2 inhibitor quinacrine (20 microM) inhibited accumulation of both c-jun and GM-CSF mRNA but had no influence on expression of other genes induced by IL-1 and TNF-alpha, including leukemia inhibitory factor (LIF). In addition, quinacrine partially blocked IL-1 plus TNF-alpha induced 3H-arachidonic acid release from prelabeled stromal cells. Furthermore, exogenous arachidonate (10 to 50 microM) induced expression of c-jun. To investigate the role of arachidonate in GM-CSF transcription, we used a reporter vector consisting of the murine GM-CSF promoter linked to firefly luciferase. Transfection efficiency was monitored by assessing expression of a constitutively active gene, RSV-beta galactosidase. In this system, quinacrine significantly inhibited IL-1 plus TNF-alpha induced GM-CSF transcription assayed with the reporter construct. Exogenous arachidonic acid alone (10 microM) increased activity of GM-CSF reporter vector 1.5-fold over control. These results are consistent with the hypothesis that arachidonate metabolites are involved in the signaling pathway that leads to IL-1 plus TNF-alpha induced GM-CSF gene expression. Thus, transcriptional activation of GM-CSF gene is mediated, in part, by the arachidonate cascade.
    [Abstract] [Full Text] [Related] [New Search]