These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exogenous myristic acid can be partially degraded prior to activation to form acyl-acyl carrier protein intermediates and lipid A in Vibrio harveyi. Author: Shen Z, Byers DM. Journal: J Bacteriol; 1994 Jan; 176(1):77-83. PubMed ID: 8282714. Abstract: To study the involvement of acyl carrier protein (ACP) in the metabolism of exogenous fatty acids in Vibrio harveyi, cultures were incubated in minimal medium with [9,10-3H]myristic acid, and labeled proteins were analyzed by gel electrophoresis. Labeled acyl-ACP was positively identified by immunoprecipitation with anti-V. harveyi ACP serum and comigration with acyl-ACP standards and [3H]beta-alanine-labeled bands on both sodium dodecyl sulfate- and urea-polyacrylamide gels. Surprisingly, most of the acyl-ACP label corresponded to fatty acid chain lengths of less than 14 carbons: C14, C12, C10, and C8 represented 33, 40, 14, and 8% of total [3H]14:0-derived acyl-ACPs, respectively, in a dark mutant (M17) of V. harveyi which lacks myristoyl-ACP esterase activity; however, labeled 14:0-ACP was absent in the wild-type strain. 14:0- and 12:0-ACP were also the predominant species labeled in complex medium. In contrast, short-chain acyl-ACPs (< or = C6) were the major labeled derivatives when V. harveyi was incubated with [3H]acetate, indicating that acyl-ACP labeling with [3H]14:0 in vivo is not due to the total degradation of [3H]14:0 to [3H]acetyl coenzyme A followed by resynthesis. Cerulenin increased the mass of medium- to long-chain acyl-ACPs (> or = C8) labeled with [3H]beta-alanine fivefold, while total incorporation of [3H]14:0 was not affected, although a shift to shorter chain lengths was noted. Additional bands which comigrated with acyl-ACP on sodium dodecyl sulfate gels were identified as lipopolysaccharide by acid hydrolysis and thin-layer chromatography. The levels of incorporation of [3H] 14:0 into acyl-ACP and lipopolysaccharide were 2 and 15%, respectively, of that into phospholipid by 10 min. Our results indicate that in contrast to the situation in Escherichia coli, exogenous fatty acids can be activated to acyl-ACP intermediates after partial degradation in V. harveyi and can effectively label products (i.e., lipid A) that require ACP as an acyl donor.[Abstract] [Full Text] [Related] [New Search]