These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Similarities of the in vivo and in vitro effects of mercuric chloride on [3H]ouabain binding and potassium activation of Na+/K(+)-ATPase in isolated rat cerebral microvessels.
    Author: Albrecht J, Hilgier W.
    Journal: Toxicol Lett; 1994 Feb 15; 70(3):331-6. PubMed ID: 8284800.
    Abstract:
    A previous study revealed that a single i.p. administration of 6 mg/kg body wt. of mercuric chloride (MC) durably inhibits the rat cerebral microvascular Na+/K(+)-ATPase activity [1]. In this study, cerebral microvessels isolated 18 h after MC treatment were compared to those obtained from control rats and subsequently treated or not treated with MC in vitro, with regard to: (a) [3H]ouabain binding to, and (b) K(+)-activation kinetics of, the Na+/K(+)-ATPase. Microvessels from MC-treated rats showed a decrease of [3H]ouabain binding down to 62% of the control binding, and the same degree of inhibition was attained in microvessels treated in vitro with 5 microM MC. Analysis of the K(+)-activation kinetics of Na+/K(+)-ATPase revealed a decrease of Vmax from the control value of 13.1 to 7.67 mumol/mg/h in microvessels from MC-treated rats and 6.07 mumol/mg/h in microvessels treated in vitro with 5 microM MC, with no change in Km in either case. The similarity of the effects of in vivo and in vitro treatments suggests that the inhibition of the cerebromicrovascular Na+/K(+)-ATPase following in vivo administration of MC results from a direct interaction of Hg2+ with the enzyme.
    [Abstract] [Full Text] [Related] [New Search]