These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: One-step purification of plant ferredoxin-NADP+ oxidoreductase expressed in Escherichia coli as fusion with glutathione S-transferase.
    Author: Serra EC, Carrillo N, Krapp AR, Ceccarelli EA.
    Journal: Protein Expr Purif; 1993 Dec; 4(6):539-46. PubMed ID: 8286951.
    Abstract:
    Complementary DNA sequences encoding the mature form of pea ferredoxin-NADP+ reductase were cloned in-frame at the 3' end of the Schistosoma japonicum glutathione S-transferase gene in the expression vector pGEX-3X (Smith and Johnson, Gene 67, 31-40, 1988). A spacer sequence linking the two genes was modified to provide a proteolytic site just before the first amino acid residue of mature pea reductase. When introduced into competent Escherichia coli cells and induced, the resulting plasmid (pGF205) directed the expression of a 60-kDa immunoreactive peptide that results from the fusion between glutathione S-transferase and ferredoxin-NADP+ reductase sequences. The fused protein could be purified in a single step by selective absorption onto glutathione-agarose beads, followed by elution with free glutathione. It showed both transferase and reductase activities. Removal of the transferase portion by cleavage with the restriction protease Xa rendered ferredoxin-NADP+ reductase electrophoretically homogeneous. The purified transgenic enzyme showed kinetic and spectroscopic properties that were similar to those reported for the plant flavoprotein, indicating that, even when fused to the 27-kDa transferase portion, the reductase was still able to assemble FAD and to acquire an active conformation in the bacterial host. The expression-purification protocol employed here allows the isolation of up to 1 mg of active ferredoxin-NADP+ reductase/g of transformed cells. The system is potentially useful for the purification of activity-impaired forms of the flavoprotein.
    [Abstract] [Full Text] [Related] [New Search]