These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Author: Roediger WE, Duncan A, Kapaniris O, Millard S. Journal: Clin Sci (Lond); 1993 Nov; 85(5):623-7. PubMed ID: 8287651. Abstract: 1. Isolated colonic epithelial cells of the rat were incubated for 40 min with [6-14C]glucose and n-[1-14C]butyrate in the presence of 0.1-2.0 mmol/l NaHS, a concentration range found in the human colon. Metabolic products, 14CO2, acetoacetate, beta-hydroxybutyrate and lactate, were measured and injury to cells was judged by diminished production of metabolites. 2. Oxidation of n-butyrate to CO2 and acetoacetate was reduced at 0.1 and 0.5 mmol/l NaHS, whereas glucose oxidation remained unimpaired. At 1.0-2.0 mmol/l NaHS, n-butyrate and glucose oxidation were dose-dependently reduced at the same rate. 3. To bypass short-chain acyl-CoA dehydrogenase activity necessary for butyrate oxidation, ketogenesis from crotonate was measured in the presence of 1.0 mmol/l NaHS. Suppression by sulphide of ketogenesis from crotonate (-10.5 +/- 6.1%) compared with control conditions was not significant, whereas suppression of ketogenesis from n-butyrate (-36.00 +/- 5.14%) was significant (P = < 0.01). Inhibition of FAD-linked oxidation was more affected by NaHS than was NAD-linked oxidation. 4. L-Methionine (5.0 mmol/l) significantly redressed the impaired beta-oxidation induced by NaHS. Methionine equally improved CO2 and ketone body production, suggesting a global reversal of the action of sulphide. 5. Sulphide-induced oxidative changes closely mirror the impairment of beta-oxidation observed in colonocytes of patients with ulcerative colitis. A hypothesis for the disease process of ulcerative colitis is that sulphides may form persulphides with butyryl-CoA, which would inhibit cellular short-chain acyl-CoA deHydrogenase and beta-oxidation to induce an energy-deficiency state in colonocytes and mucosal inflammation.[Abstract] [Full Text] [Related] [New Search]