These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins. Author: Hsu HL, Huang L, Tsan JT, Funk W, Wright WE, Hu JS, Kingston RE, Baer R. Journal: Mol Cell Biol; 1994 Feb; 14(2):1256-65. PubMed ID: 8289805. Abstract: Tumor-specific activation of the TAL1 gene is the most common genetic alteration seen in patients with T-cell acute lymphoblastic leukemia. The TAL1 gene products contain the basic helix-loop-helix (bHLH) domain, a protein dimerization and DNA-binding motif common to several known transcription factors. A binding-site selection procedure has now been used to evaluate the DNA recognition properties of TAL1. These studies demonstrate that TAL1 polypeptides do not have intrinsic DNA-binding activity, presumably because of their inability to form bHLH homodimers. However, TAL1 readily interacts with any of the known class A bHLH proteins (E12, E47, E2-2, and HEB) to form heterodimers that bind DNA in a sequence-specific manner. The TAL1 heterodimers preferentially recognize a subset of E-box elements (CANNTG) that can be represented by the consensus sequence AACAGATGGT. This consensus is composed of half-sites for recognition by the participating class A bHLH polypeptide (AACAG) and the TAL1 polypeptide (ATGGT). TAL1 heterodimers with DNA-binding activity are readily detected in nuclear extracts of Jurkat, a leukemic cell line derived from a patient with T-cell acute lymphoblastic leukemia. Hence, TAL1 is likely to bind and regulate the transcription of a unique subset of subordinate target genes, some of which may mediate the malignant function of TAL1 during T-cell leukemogenesis.[Abstract] [Full Text] [Related] [New Search]