These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: D-myo-inositol 1,4,5-trisphosphate inhibits binding of phospholipase C-delta 1 to bilayer membranes. Author: Cifuentes ME, Delaney T, Rebecchi MJ. Journal: J Biol Chem; 1994 Jan 21; 269(3):1945-8. PubMed ID: 8294445. Abstract: The binding of phosphoinositide-specific phospholipase C-delta 1 (PLC-delta 1) to bilayer membranes composed of phosphatidylcholine (PC) and phosphatidylinositol 4,5-bisphosphate (PIP2) was measured in the presence or absence of inositol phosphates. Binding was inhibited by the natural D-isomer of myo-inositol 1,4,5-trisphosphate (D-InsP3), but not by the L-isomer. The concentration of D-InsP3 required to decrease binding by 50% was 5.4 +/- 0.5 microM. 1-(alpha-Glycerophosphoryl)-D-myo-inositol 4,5-bisphosphate and D-myo-inositol 2,4,5-trisphosphate were nearly as effective as D-Ins(1,4,5)P3. D-myo-inositol monophosphate with phosphate esterified at either positions 1 or 2 of the myo-inositol ring, had no significant effect on binding. D-myo-inositol 1,4-bisphosphate weakly inhibited the binding, whereas the 4,5-isomer was nearly as potent as D-InsP3. Neither ATP nor inorganic phosphate significantly affected binding. As expected, D-Ins(1,4,5)P3 but not L-Ins(1,4,5)P3 decreased the initial rate of PIP2 hydrolysis in bilayer vesicles. The concentration required to decrease hydrolysis by 50% was 12.4 +/- 0.5 microM. A catalytic fragment of PLC-delta 1 that lacks a domain necessary for high affinity PIP2 binding was prepared as previously described (Cifuentes, M. E., Honkanen, L., and Rebecchi, M. J. (1993) J. Biol. Chem. 268, 11586-11593). In contrast to the native enzyme, the rate of PIP2 hydrolysis, catalyzed by the fragment, was not affected by D-Ins(1,4,5)P3. These data suggest that high affinity binding of the enzyme to PIP2 and processive catalysis, involve specific recognition of the 4- and 5-position phosphates of the inositol ring. Our results are consistent with feedback inhibition by the polar head group product, D-Ins(1,4,5)P3, at a step that precedes catalysis, namely interfacial recognition.[Abstract] [Full Text] [Related] [New Search]