These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Zinc inhibition of t-[3H]butylbicycloorthobenzoate binding to the GABAA receptor complex. Author: Kume A, Sakurai SY, Albin RL. Journal: J Neurochem; 1994 Feb; 62(2):602-7. PubMed ID: 8294923. Abstract: The effect of Zn2+ on t-[3H]butylbicycloorthobenzoate ([3H]TBOB) binding to the GABAA receptor complex was studied autoradiographically in rat brain. Zn2+ inhibited [3H]TBOB binding in a dose-dependent manner at physiological concentrations. Saturation analysis revealed noncompetitive inhibition in various brain regions. The inhibitory effect of Zn2+ had regional heterogeneity; regions showing the greatest inhibition of [3H]TBOB binding were cortical laminae I-III, most areas of hippocampus, striatum, septum, and cerebellar cortex. Regions with relatively less inhibition of [3H]TBOB binding included cortical laminae V-VI, thalamus, superior colliculus, inferior colliculus, and central gray matter. The effect of Zn2+ and those of other GABAA ligands, such as benzodiazepines, bicuculline, isoguvacine, and picrotoxin, on [3H]TBOB binding seemed to be additive. Ni2+, Cd2+, and Cu2+ also inhibited [3H]TBOB binding with a regional heterogeneity similar to that produced by Zn2+. These results are consistent with Zn2+ acting at the previously detected recognition site on the GABAA receptor complex, distinct from the picrotoxin, GABA, and benzodiazepine sites. The regional heterogeneity of the Zn2+ effect may reflect differential regional distribution of GABAA receptor subtypes among brain regions. Other divalent cations probably act at the Zn2+ binding site.[Abstract] [Full Text] [Related] [New Search]