These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interactions between cells and collagen V molecules or single chains involve distinct mechanisms.
    Author: Ruggiero F, Champliaud MF, Garrone R, Aumailley M.
    Journal: Exp Cell Res; 1994 Feb; 210(2):215-23. PubMed ID: 8299719.
    Abstract:
    Acid-soluble and pepsin-treated collagen V were prepared from fetal human bones or human placenta, respectively, to be tested for potential cell adhesion promoting activity. Out of 14 different collagen I-adhering cell lines, 10 showed distinct adhesion to collagen V. In all cases adhesion was followed by spreading. The activities of intact and pepsin-solubilized collagen V were similar, suggesting that the cell binding sites are restricted to the triple-helical domain of the molecules. Cell adhesion was also induced by the unfolded form of collagen V and after separation of the alpha chains by heparin affinity chromatography. Isolated alpha 2(V) chains, rich in RGD sequences, were more efficient than isolated alpha 1(V) chains. However, cell adhesion to native or denatured collagen V did not proceed by the same molecular mechanisms as shown by cell adhesion inhibition experiments. Cell adhesion to native collagen V was insensitive to the presence of RGD-containing synthetic peptides while adhesion to denatured collagen V was inhibited by the peptides. Furthermore, the results strongly suggested a major role for alpha 1 beta 1 and alpha 2 beta 1 integrins in the RGD-independent cell adhesion to native collagen V. These data indicate that collagen V is a specific adhesive substrate for different cell types. It also suggests that distinct sets of RGD-dependent and RGD-independent receptors mediate cell attachment to unfolded and native collagen V, respectively. This mechanism is shared by at least the interstitial collagens I and VI, which supports the hypothesis that when included in the triple-helical conformation of collagens, RGD sequences are either not accessible to cells or exhibit specific conformations recognized by different integrins.
    [Abstract] [Full Text] [Related] [New Search]