These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of high specific activity [3H]-9-cis-retinoic acid and its application for identifying retinoids with unusual binding properties. Author: Boehm MF, McClurg MR, Pathirana C, Mangelsdorf D, White SK, Hebert J, Winn D, Goldman ME, Heyman RA. Journal: J Med Chem; 1994 Feb 04; 37(3):408-14. PubMed ID: 8308867. Abstract: all-trans-Retinoic acid is known to bind to the retinoic acid receptors (RARs) resulting in an increase in their transcriptional activity. In contrast, recently identified 9-cis-retinoic acid (9-cis-RA), which is an additional endogenous RA isomer, is capable of binding to both RARs and retinoid X receptors (RXRs). These distinct properties have raised questions as to the biological role governed by these two retinoic acid isomers and the set of target genes that they regulate. Herein, we report the synthesis of high specific activity [3H]-9-cis-RA and its application to study the ligand-binding properties of the various retinoid receptor subtypes. We examined the binding properties of RARs and RXRs for a series of synthetic retinoids and compared the ligand-binding properties of these arotinoid analogs with their ability to regulate gene expression via the retinoid receptors in a cotransfection assay. The utilization of the [3H]-9-cis-RA competitive binding assay and the cotransfection assay has made it possible to rapidly identify important structural features of retinoids leading to increased selectivity for either the RAR or RXR receptor subtypes.[Abstract] [Full Text] [Related] [New Search]