These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation by anions of p-aminohippurate transport in bovine renal basolateral membrane vesicles.
    Author: Schmitt C, Burckhardt G.
    Journal: Pflugers Arch; 1993 Nov; 425(3-4):241-7. PubMed ID: 8309784.
    Abstract:
    In the presence of 10 microM 2-oxoglutarate (2-OG) and of an inward Na+ gradient, uphill [3H]p-aminohippurate (PAH) uptake occurs due to cooperation of the PAH/2-OG exchanger and the Na(+)-coupled 2-OG transporter in bovine renal basolateral membrane vesicles. Uphill PAH uptake is observed with Cl-, but not with gluconate as the bulk anion. To determine specificity and nature of this anion effect [3H]PAH uptake was measured in the presence of several anions without and with ionophores to distinguish indirect from direct effects on the PAH transporter. Na(+)-gradient plus 2-OG-stimulated [3H]PAH uptake is fast with Cl-, intermediate with F-, Br-, I-, NO3- and SCN-, and slow in the presence of gluconate, SO4(2-) and HPO4(2-). Stimulation by Cl-(as compared to gluconate) is attenuated but not abolished, by clamping electrical potential and pH differences to zero, suggesting a partial effect through charge compensation and a major effect of anions on the PAH transporter itself. Indeed, [3H]PAH/2-OG and [3H]PAH/PAH exchange rates under voltage- and pH-clamped condition depend on bulk anions although the anion effects are less pronounced than with Na(+)-gradient plus 2-OG-stimulated [3H]PAH uptake. Since an inward Cl- gradient does not drive [3H]PAH above or below equilibrium distribution, Cl- ions are most probably not translocated by the PAH transporter. We propose that anions modulate the PAH transporter by interacting with a site not directly related to anion transport.
    [Abstract] [Full Text] [Related] [New Search]