These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [The role of G-regulatory proteins in the intracellular mechanism of cardiac angiotensin-II receptors]. Author: Sechi LA, Sechi G, De Carli S, Griffin CA, Schambelan M, Bartoli E. Journal: Cardiologia; 1993 Aug; 38(8):519-23. PubMed ID: 8313407. Abstract: High-affinity angiotensin II receptors have been identified in cardiac tissue of many animal species. In the heart, angiotensin II exerts positive inotropic and chronotropic effects, constricts coronary vessels, and stimulates cell growth. In vascular smooth muscle and adrenal cortex angiotensin II interacts with guanidine nucleotide regulatory proteins because GTP-gamma-S causes dissociation of the radioligand from its receptor. To investigate whether angiotensin II interacts with guanidine nucleotide regulatory proteins also in cardiac tissue, we studied the effects of GTP-gamma-S on [Sar1, Ile8]-angiotensin II binding to angiotensin II receptor subtypes (AT1 and AT2) in hearts obtained from 16- to 20-week-old Sprague-Dawley rats. We employed an in situ technique performed on frozen tissue sections. Competition experiments performed with the nonpeptide inhibitors losartan and PD123177 allowed identification of both AT1 and AT2 angiotensin II receptors in rat heart. These receptors were present in comparable amounts. In a different set of experiments the effects of GTP-gamma-S (100 microM) on radioligand displacement from AT1 and AT2 receptors were studied. GTP-gamma-S caused a progressive dissociation of the radioligand from the AT1 receptor indicating that this receptor interacts with guanidine nucleotide regulatory proteins. In contrast, the AT2 receptor does not appear to directly interact with guanidine nucleotide regulatory proteins. In summary, the study shows that both angiotensin II receptor subtypes are present in rat heart and that guanidine nucleotide regulatory proteins are implicated in the signal transduction mechanism of the cardiac AT1 receptor.[Abstract] [Full Text] [Related] [New Search]