These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Origin of subcortical somatosensory evoked potentials in response to posterior tibial nerve stimulation in humans. Author: Urasaki E, Wada S, Yokota A, Tokimura T, Yasukouchi H. Journal: J UOEH; 1993 Jun 01; 15(2):113-35. PubMed ID: 8316710. Abstract: To identify the origin of short latency somatosensory evoked potentials (SSEPs) to posterior tibial nerve stimulation, direct recordings were made from the cervical cord, the ventricular system and the frontal subcortex during 8 neurosurgical operations. The origin of each component of SSEPs was also studied in 7 selected patients with various lesions in the central nervous system. In addition, SSEPs to median nerve stimulation were investigated in 4 of 8 surgical cases and all 7 cases of the lesion study group. Bilateral posterior tibial nerve stimulation in 10 normal subjects showed spinal N28 on the skin of the posterior neck and far-field P30 and N33 components followed by a cortical P38 component at the scalp. Direct recordings made to the mid-brain through the medulla oblongata showed a negative potential with gradually increasing latency. The peak of the negativity in the vicinity of the dorsal column nucleus showed almost the same latency as that of the scalp far-field P30, and positivity with a stationary peak was found above the dorsal column nucleus. Above the mid-pons, there was a stationary negativity with no latency shift, showing the same peak latency as that of scalp N33. The spatiotemporal distributions of P30 and N33 to posterior tibial nerve stimulation were analogous to those of P14 and N18 by median nerve stimulation. Transesophageal and direct cervical cord recordings showed that the spinal N13 phase to median nerve stimulation was reversed between the dorsal and ventral sides of the cervical cord. No such reversal occurred for the spinal N28 potential. Clinical lesion studies showed that changes in P30 and P14, and in N33 and N18 correlated with one another: that is, 1) prolongation of latency of N33 was also observed for N18; 2) absence of P30 was paralleled by the absence of P14. These data suggest that spinal N28 originates from ascending activity such as a dorsal column volley, and scalp P30 comes from activity near the dorsal column nucleus, which is similar to the P14 component of median nerve stimulation. The origin of N33 is thought to be similar to N18 from median nerve stimulation, which originates from brainstem activity below the thalamus.[Abstract] [Full Text] [Related] [New Search]