These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NADH oxidase activity of rat liver plasma membrane activated by guanine nucleotides. Author: Morré DJ, Davidson M, Geilen C, Lawrence J, Flesher G, Crowe R, Crane FL. Journal: Biochem J; 1993 Jun 15; 292 ( Pt 3)(Pt 3):647-53. PubMed ID: 8317995. Abstract: The activity of a hormone- and growth-factor-stimulated NADH oxidase of the rat liver plasma membrane responds to guanine nucleotides, but in a manner that differs from that of the classic trimeric and low-molecular-mass monomeric G-proteins. In the absence of added bivalent ions, both GTP and GDP as well as guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S]) but not guanosine 5'[beta-thio]diphosphate (GDP[beta-S]) stimulate the activity over the range 1 microM to 100 microM. Other di- and tri-nucleotides also stimulate, but only at concentrations of 100 microM or higher. Added bivalent ions are not required either for NADH oxidation or guanine nucleotide stimulation. Bivalent ions (Mg2+ > Mn2+ > or = Ca2+) alone stimulate only slightly at low concentrations and then inhibit at high concentrations. The inhibitions are augmented by GDP or GTP [gamma-S] but not by GTP. Although the activity is the same, or less, in the presence of 0.5 mM MgCl2, GTP at 1-100 nM and other nucleotides at 0.1 mM or 1 mM still stimulate in its presence. The NADH oxidase is activated by mastoparan but aluminum fluoride is weakly inhibitory. Cholera and pertussis toxins elicit only marginal responses. Both the Mg2+ and the GDP and GTP[gamma-S] inhibitions (but not the GTP stimulations) shift to higher concentrations when the membrane preparations are first solubilized with Triton X-100. The results suggest a role for guanine nucleotides in the regulation of plasma membrane NADH oxidase, but with properties that differ from those of either trimeric or the low-molecular-mass G proteins thus far described.[Abstract] [Full Text] [Related] [New Search]