These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude.
    Author: Durmowicz AG, Hofmeister S, Kadyraliev TK, Aldashev AA, Stenmark KR.
    Journal: J Appl Physiol (1985); 1993 May; 74(5):2276-85. PubMed ID: 8335557.
    Abstract:
    The high-altitude (HA) native yak (Bos grunniens) has successfully adapted to chronic hypoxia (CH) despite being in the same genus as domestic cows, which are known for their great hypoxic pulmonary vasoconstrictor responses (HPVRs), muscular pulmonary arteries, and development of severe pulmonary hypertension on exposure to CH. To determine possible mechanisms by which the pulmonary circulation may adapt to CH, yak pulmonary vascular reactivity to both vasoconstrictor and vasodilator stimuli and yak pulmonary artery structure were assessed. Hypoxia caused a small but significant HPVR, and norepinephrine infusion caused a greater rise in pulmonary arterial pressure (Ppa) than did hypoxia. Acetylcholine, an endothelium-dependent vasodilator, had no effect on Ppa but lowered pulmonary resistance (Rp) by causing an increase in cardiac output. Sodium nitroprusside, an endothelium-independent vasodilator, decreased both Ppa and Rp significantly. Yak small pulmonary arteries had a 4.1 +/- 0.1% medial thickness, with vessels < or = 100 microns devoid of smooth muscle. Yak pulmonary artery endothelial cells were much longer, wider, and rounder in appearance than those of domestic cows. Thus the yak has successfully adapted to HA conditions by maintaining both a blunted HPVR and thin-walled pulmonary vessels. Differences in both endothelial cell morphology and response to acetylcholine between the yak and those reported in the domestic cow suggest the adaptation to HA may include changes not only in the amount of pulmonary vascular smooth muscle but in endothelial cell function and structure as well.
    [Abstract] [Full Text] [Related] [New Search]