These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of Na(+)-independent glutamine transport in rat liver. Author: Pacitti AJ, Inoue Y, Souba WW. Journal: Am J Physiol; 1993 Jul; 265(1 Pt 1):G90-8. PubMed ID: 8338176. Abstract: In hepatic plasma membrane vesicles (HPMVs) from rat liver, we observed that approximately 40-45% of Na(+)-independent glutamine uptake occurs by a saturable carrier-mediated process. This component of glutamine uptake is mediated by a transport agency distinct from that of previously described systems for the Na(+)-independent transport of amino acids. Transport of glutamine was electroneutral and occurred into an osmotically active space with negligible membrane binding. The model system L substrate 2-amino-2-norbornane-carboxylic acid (BCH) showed no appreciable inhibition of Na(+)-independent glutamine uptake by HPMVs but effectively inhibited the uptake of leucine, a classic system L substrate, in identical vesicle preparations. Further evidence against system L-mediated glutamine transport was provided by the pH dependence and the lack of trans-stimulation of saturable uptake. Competition experiments with selected amino acids revealed a pattern of inhibition of glutamine transport that was inconsistent with assignment of glutamine entry to systems asc, T, or systems for the Na(+)-independent transport of the charged amino acids. This BCH-noninhibitable transport system in HPMVs was highly selective for glutamine, histidine, and, to a lesser extent, asparagine. Inhibition of Na(+)-independent glutamine transport by leucine was noncompetitive in nature. On the basis of Na+ independence, pH sensitivity, absence of trans-stimulation, and an amino acid selectivity similar to that of the previously described hepatic Na(+)-dependent system N, we have provisionally designated the glutamine transport agency described in this article as system "n."[Abstract] [Full Text] [Related] [New Search]