These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stimulus-induced dissociation of alpha subunits of heterotrimeric GTP-binding proteins from the cytoskeleton of human neutrophils. Author: Särndahl E, Bokoch GM, Stendahl O, Andersson T. Journal: Proc Natl Acad Sci U S A; 1993 Jul 15; 90(14):6552-6. PubMed ID: 8341668. Abstract: Previous studies on the mechanism responsible for terminating the generation of second messengers induced by chemotactic factor-receptor complexes have, on one hand, suggested a direct role of a GTP-binding protein(s) (G protein), and, on the other hand, proposed that there is a lateral segregation of the ligand-receptor complexes into G protein-depleted domains of the plasma membrane. In the present investigation, which addresses these apparently contradictory findings, we found that a substantial part of the alpha subunits of the Gn protein (Gn alpha) in unstimulated neutrophils were associated with a cytoskeletal fraction and that release of these subunits occurred upon stimulation with the chemotactic factor fMet-Leu-Phe. An identical Gn alpha release could also be induced by direct activation of G proteins with guanosine 5'-[gamma-thio]triphosphate or AIF4-. In contrast, the alpha subunits of the stimulatory G protein (Gs alpha) also found associated with the cytoskeletal fraction of unstimulated cells were not released by fMet-Leu-Phe stimulation. However, they were effectively released by direct G-protein activation with guanosine 5'-[gamma-thio]triphosphate. In addition, inhibition of the fMet-Leu-Phe-stimulated modulation of the actin network by pertussis toxin did not affect the fMet-Leu-Phe-induced release of Gn alpha from the cytoskeletal fraction. These observations indicate that fMet-Leu-Phe-induced activation of neutrophils involves a specific dissociation of Gn alpha from the cytoskeleton and that this release is not a consequence of the well-known effect of fMet-Leu-Phe on the cytoskeleton of neutrophils. The present data contribute ideas concerning the transducing properties of G proteins in cellular signaling and seem to reconcile the apparently contradictory concepts of how the cytoskeleton participates in the termination of the chemotactic-factor-induced generation of second messengers in human neutrophils.[Abstract] [Full Text] [Related] [New Search]