These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identity and some properties of the L-threonine aldolase activity manifested by pure 2-amino-3-ketobutyrate ligase of Escherichia coli.
    Author: Marcus JP, Dekker EE.
    Journal: Biochim Biophys Acta; 1993 Aug 07; 1164(3):299-304. PubMed ID: 8343529.
    Abstract:
    2-Amino-3-ketobutyrate ligase catalyzes the reversible, pyridoxal 5'-phosphate-dependent condensation of glycine with acetyl CoA forming the unstable intermediate, 2-amino-3-ketobutyrate. Several independent lines of evidence indicate that the pure protein obtained in the purification of this ligase from Escherichia coli also has L-threonine aldolase activity. The evidence includes: (a), a constant ratio of specific activities (aldolase/ligase) at all stages of purifying 2-amino-3-ketobutyrate ligase to homogeneity; (b), the same rate of loss of aldolase and ligase activities during controlled heat inactivation of the pure protein at 60 degrees C in the absence, as well as in the presence of acetyl CoA, a protective substrate; (c), ratios of the two enzymatic activities that are not significantly different during slow inactivation by iodoacetamide, with and without L-threonine added; (d), coincident rates of loss and essentially identical rates of recovery of aldolase activity and ligase activity during resolution of the holoenzyme with hydroxylamine followed by reconstitution with pyridoxal 5'-phosphate. No aldolase activity is observed with D-threonine as substrate and L-allothreonine is about 25% as effective as L-threonine. Whereas ligase activity has a sharp pH optimum at 7.5, the aldolase activity of this pure protein is maximal at pH 9.0. Comparative apparent Km values for glycine (ligase) and L-threonine (aldolase) are 10 mM and 0.9 mM, respectively, whereas corresponding respective Vmax values were found to be 2.5 mumol of CoA released/min per mg vs. 0.014 mumol of acetaldehyde formed (NADH oxidized)/min per mg.
    [Abstract] [Full Text] [Related] [New Search]