These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Abnormal regulation of low density lipoprotein-sensitive events in a cholesterol transport mutant. Author: Dahl NK, Gutheil WG, Liscum L. Journal: J Biol Chem; 1993 Aug 15; 268(23):16979-86. PubMed ID: 8349588. Abstract: We have isolated and characterized Chinese hamster ovary cell mutants defective in the intracellular transport of low density lipoprotein (LDL)-derived cholesterol (Dahl, N. K., Reed, K. L., Daunais, M. A., Faust, J. R., and Liscum, L. (1992) J. Biol. Chem. 267, 4889-4896). Mutant 2-2, which exhibits a cholesterol transport defect indistinguishable from the Niemann-Pick C phenotype, shows impaired but not absent LDL-mediated suppression of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity. In parental cells, LDL suppression of HMG-CoA reductase is modulated by two mechanisms, decreased gene transcription and accelerated protein turnover. Using the chimeric protein HMGal as a reporter protein for LDL-mediated turnover and Northern blot analysis to monitor HMG-CoA reductase mRNA levels, we have dissected the contributions of these two regulatory responses to LDL-mediated suppression of HMG-CoA reductase activity. Kinetic modeling using the kinlsq program showed the following. Mutant 2-2 exhibits normal LDL-mediated acceleration of HMGal degradation, coupled with relatively abnormal regulation of mRNA. This suggests that the LDL-cholesterol signaling pathway to the nucleus is defective relative to the signal that results in HMG-CoA reductase turnover. In addition, LDL-mediated acceleration of HMGal turnover occurs well before LDL stimulation of cholesterol esterification in mutant 2-2, whereas these events occur synchronously in the parental cell line. This suggests that more than one pathway or mechanism exists for LDL-cholesterol signaling to the endoplasmic reticulum.[Abstract] [Full Text] [Related] [New Search]