These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Presynaptic A-current based on heteromultimeric K+ channels detected in vivo.
    Author: Sheng M, Liao YJ, Jan YN, Jan LY.
    Journal: Nature; 1993 Sep 02; 365(6441):72-5. PubMed ID: 8361540.
    Abstract:
    A wide variety of voltage-gated K+ channels are involved in the regulation of neuronal excitability and synaptic transmission. Their heterogeneity arises in part from the large number of genes encoding different K+ channel subunits (reviewed in ref. 1). In addition, heterologous expression studies indicate that assembly of distinct subunits into heteromultimeric channels may contribute further to K+ channel diversity. A question has been whether heteromeric K+ channels actually form in vivo, and if so, whether specific combinations of subunits could account for major K+ currents identified in neurons. We present here biochemical evidence that Kv1.4 and Kv1.2, two K+ channel subunits of the Shaker subfamily, co-assemble in rat brain. The Kv1.4/Kv1.2 heteromultimer combines features of both parent subunits, resulting in an A-type K+ channel. Immunocytochemical evidence suggests that the heteromultimers are localized in axons and nerve terminals. We propose that Kv1.4/Kv1.2 heteromultimers may form the molecular basis of a presynaptic A-type K+ channel involved in the regulation of neurotransmitter release.
    [Abstract] [Full Text] [Related] [New Search]