These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone: relationship to Ca2+ pools and relevance in platelet activation. Author: Authi KS, Bokkala S, Patel Y, Kakkar VV, Munkonge F. Journal: Biochem J; 1993 Aug 15; 294 ( Pt 1)(Pt 1):119-26. PubMed ID: 8363562. Abstract: The effects of the Ca(2+)-ATPase inhibitors thapsigargin (Tg) and 2,5-di-(t-butyl)-1,4-benzohydroquinone (tBuBHQ) were examined by using Ca(2+)-regulatory systems of platelet mixed membranes, saponin-permeabilized and intact platelets. Both agents inhibit Ca(2+)-ATPase activities of platelet mixed membranes, without any effect on the basal Mg(2+)-ATPase activity. Tg is more effective (EC50 = 35 nM) than tBuBHQ (EC50 = 580 nM). The effect of the two inhibitors on 45Ca2+ release from saponin-permeabilized platelets has also been characterized. 45Ca2+ uptake into non-mitochondrial intracellular stores occurs via an ATP-dependent mechanism, and if added at equilibrium the second messenger Ins(1,4,5)P3 releases 50% of the accumulated 45Ca2+. Maximally effective concentrations of Tg (1 microM) and tBuBHQ (50 microM) release 77% and 68% of the accumulated 45Ca2+. Addition of Ins(1,4,5)P3 together with either Tg or tBuBHQ resulted in a non-additive release which was the same as with either Tg or tBuBHQ alone, indicating that the Ins(1,4,5)P3-sensitive Ca2+ pool was a subset of the pool that is sensitive to the Ca(2+)-ATPase inhibitors. Release of 45Ca2+ by either Tg or tBuBHQ was not affected by heparin, which totally blocked Ins(1,4,5)P3-induced Ca2+ release, and Tg was found not to affect [32P]Ins(1,4,5)P3 binding to its receptor on mixed membranes. Thus both Tg and tBuBHQ release Ca2+ from a pool that totally overlaps the Ins(1,4,5)P3-sensitive pool without affecting Ins(1,4,5)P3 function. In intact indomethacin-treated Fura 2-loaded platelets, Tg and tBuBHQ cause Ca2+ elevation, arising from release from intracellular stores and influx from the outside. Both Tg and tBuBHQ elevated Ca2+ to similar levels, which were less and slower than those observed with thrombin. Addition of thrombin to cells already treated with Tg or tBuBHQ produced further elevation of Ca2+, indicating agonist utilization of a Ca(2+)-ATPase inhibitor-insensitive pool. In aggregation experiments Tg and tBuBHQ showed different functional effects. In indomethacin-treated cells Tg induces slow aggregation and secretion responses, whereas tBuBHQ only induces shape change. Both agents show synergistic secretory responses with the protein kinase C activator dioctanoylglycerol (DiC8). Tg also showed greater ability than tBuBHQ to release [3H]arachidonic acid (AA) from [3H]AA-labelled platelets. Additionally, in [32P]Pi-labelled platelets both Tg and tBuBHQ induced phosphorylation of myosin light chain, a 27 kDa protein and the 45 kDa protein pleckstrin, but Tg showed a greater ability than tBuBHQ to cause phosphorylation of pleckstrin. These studies indicate that Tg and tBuBHQ are effective in releasing the Ins(1,4,5)P3-sensitive Ca2+ pool in platelets.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]