These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: From uni-site to multi-site ATP synthesis in thylakoid membranes.
    Author: Labahn A, Gräber P.
    Journal: Biochim Biophys Acta; 1993 Sep 13; 1144(2):170-6. PubMed ID: 8369335.
    Abstract:
    The membrane-bound H(+)-ATPase from chloroplasts, CF0F1, was brought into the active, reduced state by illumination in the presence of thioredoxin and dithiothreitol. The endogenous nucleotides were removed by a washing procedure so that the active, reduced enzyme contained one tightly bound ATP per CF0F1. When [14C]ADP was added in substoichiometric amounts during continuous illumination, ADP was bound to the enzyme, phosphorylated and released as [14C]ATP, i.e., the tightly bound ATP was not involved in the catalytic turnover ('uni-site ATP-synthesis'). The rate constant for ADP binding was k = (2.0 +/- 0.5) x 10(6) M-1 s-1. The rate of ATP synthesis was measured as a function of the ADP concentration from 8 nM up to 1 mM in the presence of 2 mM phosphate during continuous illumination. A linear increase of the rate was observed up to 100 nM. Above this concentration a supralinear increase was found, indicating the occupation of a second ADP-binding site. A plateau was reached between 1.5 microM and 2.3 microM ADP with a rate of vpl = 3.7 s-1. The half-maximal rate from this plateau was observed at 780 nM. Above 2.3 microM ADP up to 1 mM ADP the data were described by Michaelis-Menten kinetics (vmax = 80 s-1; apparent KM = 32 microM). These results indicated the participation of at least two different ADP binding sites in ATP synthesis catalyzed by the membrane-bound CF0F1.
    [Abstract] [Full Text] [Related] [New Search]