These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Eutectic mixed monolayers in equilibrium with phospholipid-bilayers and triolein-liquid phase. Author: Handa T, Saito H, Miyajima K. Journal: Biophys J; 1993 Jun; 64(6):1760-5. PubMed ID: 8369406. Abstract: Triolein (TO) and phospholipids (egg yolk phosphatidylcholine, egg yolk phosphatidylethanolamine, and bovine brain phosphatidylserine) had low mutual solubilities and separated into the TO-liquid phase and phospholipid-bilayers. Spreading pressures of the TO-phospholipid mixture (i.e., surface pressures of the mixed monolayer in equilibrium with the phase-separating lipid mixture) at the air/saline interface were independent of the lipid composition. On the other hand, collapse pressures of the mixed monolayer of TO and phospholipid (i.e., surface pressures of the mixed monolayer in equilibrium with the TO-liquid phase) at the interface changed with the monolayer composition and were lower than the spreading pressure. The experimental data indicated the spreading and collapse pressures as offering a phase diagram for the presence of equilibrium between the mixed monolayer, the phospholipid-bilayers and the TO-liquid phase. The diagram showed that TO and the phospholipids were miscible in the mixed monolayer, forming an eutectic mixed monolayer. When the mixed monolayer initially had the eutectic composition, no collapse of the monolayer was detected until the surface pressure reached the value of the spreading pressure. No specific complex between TO and the phospholipid is required to explain the stability and collapse of the mixed monolayers. The bulk immiscibility of the lipids elucidated by the spreading pressure-measurements, immediately leads to the phase behaviors observed.[Abstract] [Full Text] [Related] [New Search]