These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression in Escherichia coli of the flavin-containing monooxygenase D (form II) from adult human liver: determination of a distinct tertiary amine substrate specificity.
    Author: Lomri N, Yang Z, Cashman JR.
    Journal: Chem Res Toxicol; 1993; 6(4):425-9. PubMed ID: 8374037.
    Abstract:
    The cDNA for a major component of the family of flavin-containing monooxygenases (FMOs) present in adult human liver (i.e., HLFMO-D) has been cloned and expressed in a prokaryotic system. Escherichia coli strain NM522 was transformed with pTrcHLFMO-D, and the HLFMO-D cDNA was expressed under the control of the Trc promoter. A variety of tertiary amine substrates [i.e., chlorpromazine and 10-[(N,N-dimethylamino)alkyl]- 2-(trifluoromethyl)phenothiazines] were efficiently oxygenated by HLFMO-D cDNA expressed in E. coli or by adult human liver microsomes. Approximate dimensions of the substrate binding channel for both adult human liver microsomal FMO and cDNA-expressed HLFMO-D were apparent from an examination of the N-oxygenation of a series of 10-[(N,N-dimethylamino)alkyl]-2-(trifluoromethyl)phenothiazines. The substrate regioselectivity studies suggest that adult human liver FMO form D possesses a distinct substrate specificity compared with form A FMO from animal hepatic sources. It is likely that the substrate specificity observed for cDNA-expressed adult human liver FMO-D may have consequences for the metabolism and distribution of tertiary amines and phosphorus- and sulfur-containing drugs in humans and may provide insight into the physiologic substrate(s) for adult human liver FMO.
    [Abstract] [Full Text] [Related] [New Search]