These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Author: Hua P, Woo EJ, Webster JG, Tompkins WJ.
    Journal: IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870.
    Abstract:
    In electrical impedance tomography (EIT), we inject currents through and measure voltages from an array of surface electrodes. The measured voltages are sensitive to electrode-skin contact impedance because the contact impedance and the current density through this contact impedance are both high. We used large electrodes to provide a more uniform current distribution and reduce the contact impedance. A large electrode differs from a point electrode in that it has shunting and edge effects which cannot be modeled by a single resistor. We used the finite element method (FEM) to study the electric field distributions underneath an electrode, and developed three models: a FEM model, a simplified FEM model and a weighted load model. We showed that the FEM models considered both shunting and edge effects and matched closely the experimental measurements. FEM models for electrodes can be used to improve the performance of an electrical impedance tomography reconstruction algorithm.
    [Abstract] [Full Text] [Related] [New Search]