These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cross-coupling of signal transduction pathways: the dioxin receptor mediates induction of cytochrome P-450IA1 expression via a protein kinase C-dependent mechanism.
    Author: Berghard A, Gradin K, Pongratz I, Whitelaw M, Poellinger L.
    Journal: Mol Cell Biol; 1993 Jan; 13(1):677-89. PubMed ID: 8380231.
    Abstract:
    Signal transduction by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) is mediated by the intracellular dioxin receptor which, in its dioxin-activated state, regulates transcription of target genes encoding drug-metabolizing enzymes, such as cytochrome P-450IA1 and glutathione S-transferase Ya. Exposure of the dioxin receptor to dioxin leads to an apparent translocation of the receptor to the nucleus in vivo and to a rapid conversion of the receptor from a latent, non-DNA-binding form to a species that binds to dioxin-responsive positive control elements in vitro. This DNA-binding form of receptor appears to be a heterodimeric complex with the helix-loop-helix factor Arnt. In this study, we show that activation of the cytochrome P-450IA1 gene and minimal dioxin-responsive reporter constructs by the dioxin receptor was inhibited following prolonged treatment of human keratinocytes with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Inhibition of the receptor-mediated activation response was also achieved by treatment of the cells with a number of protein kinase inhibitors, one of which, calphostin C, shows selectivity for protein kinase C. Taken together, these data suggest that protein kinase C-dependent phosphorylation may play an essential role in the dioxin signaling pathway. This hypothesis is supported by the observation that pretreatment of the cells with 12-O-tetradecanoylphorbol-13-acetate inhibited the DNA-binding activity of the dioxin receptor in vivo. In vivo, the dioxin receptor was found to be a phosphoprotein. In vitro, dephosphorylation of the ligand-activated, heteromeric dioxin receptor form or dephosphorylation of the individual ligand-binding and Arnt receptor subunits inhibited the xenobiotic response element-binding activity. Moreover, dephosphorylation experiments with the individual receptor subunits prior to assembly of the xenobiotic response element-binding receptor form indicated that phosphorylation seemed to be important for the DNA-binding activity per se of the receptor, whereas Arnt appeared to require phosphorylation to interact with the receptor. Finally, a protein kinase C inhibitor-sensitive cytosolic catalytic activity that could restore the DNA-binding activity of the dephosphorylated dioxin receptor form was identified.
    [Abstract] [Full Text] [Related] [New Search]