These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Author: Cogswell AM, Stevens RJ, Hood DA. Journal: Am J Physiol; 1993 Feb; 264(2 Pt 1):C383-9. PubMed ID: 8383431. Abstract: Two mitochondrial fractions, termed intermyofibrillar (IMF) and subsarcolemmal (SS), were isolated from skeletal muscle, and their biochemical properties were related to differences in respiration and mitochondrial protein synthesis. State III respiration was 2.3- to 2.8-fold greater in IMF than in SS mitochondria. Site 1 inhibition of respiration with rotenone reduced this difference to 1.4-fold. When sites 1 and 2 were inhibited with antimycin, the 1.4-fold differences remained. The activities of cytochrome-c oxidase (CYTOX) and succinate dehydrogenase (SDH) could account for some of these differences, since CYTOX was 20% greater (P < 0.05) in IMF mitochondria, and SDH was 40% greater (P < 0.05) in SS mitochondria. Cytochromes a, b, c, and c1 contents were similar in the two fractions. Cardiolipin (CL) content was higher (P < 0.05) in SS mitochondria, indicating a less dense mitochondrial fraction with respect to CL. In vitro [3H]leucine incorporation was 1.8-fold higher (P < 0.05) in IMF than in SS mitochondria. Thus compositional differences between IMF and SS fractions exist, perhaps representing mitochondria at different stages of biogenesis. The biochemical and functional differences could not solely be due to differences in mitochondrial protein synthesis but could also be due to nuclear-directed protein synthesis specific to each mitochondrial fraction.[Abstract] [Full Text] [Related] [New Search]