These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The influence of nodal constriction on conduction velocity in myelinated nerve fibers.
    Author: Halter JA, Clark JW.
    Journal: Neuroreport; 1993 Jan; 4(1):89-92. PubMed ID: 8384020.
    Abstract:
    Myelinated nerve fibers exhibit a complex anatomy in the nodal region which includes a marked nodal-paranodal constriction and an intricate paranodal structure where the myelin sheath is separated from the axon by a narrow periaxonal space. In this study, a recently developed computational model of the mammalian myelinated nerve fiber based on electron microscopic data was employed to examine the effect of the nodal-paranodal axonal radius and periaxonal space width on the conduction of action potentials. These findings indicate that the nodal-paranodal constriction promotes higher conduction velocities by minimizing the component of the nodal capacity contributed by the paranodal axolemma. Model prediction of optimal nodal-paranodal radii is correlated with radii determined in experimental anatomical studies.
    [Abstract] [Full Text] [Related] [New Search]