These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: correlations with patterns of cytochrome oxidase. Author: Lachica EA, Beck PD, Casagrande VA. Journal: J Comp Neurol; 1993 Mar 08; 329(2):163-87. PubMed ID: 8384222. Abstract: This study used biocytin and horseradish peroxidase (HRP) to examine the intrinsic connections of the cytochrome oxidase (CO) rich blob and CO poor nonblob zones within layer III of striate cortex in two primate species, nocturnal prosimian bush babies (Galago crassicaudatus) and diurnal simian squirrel monkeys (Saimiri sciureus). Our main objective was to determine whether separate classes of lateral geniculate nucleus (LGN) cells projected to separate superficial layer zones or layers in either species. There were three significant findings. First, we confirm that layer III consists of three sublayers, IIIA, IIIB, and IIIC in both species. Layer IIIA receives input from layers IIIB, IIIC, and V, with little or no input from LGN recipient layers IV and VI. Layer IIIB receives its input from nearly every cortical layer. Layer IIIC, receives input principally from layers IV alpha [which receives its input from magnocellular (M) LGN cells] and from layers V and VI. Taken together with other findings on the extrinsic connections of these layers, our data suggest that IIIA and IIIC provide output to separate hierarchies of visual areas and IIIB acts as a set of interneurons. Second, we find that, as in macaque monkeys, cells in both IV beta and IV alpha of bush babies and squirrel monkeys project to layer IIIB, converging within the blobs. These results suggest that information from all LGN cell classes [parvocellular (P), M, and the Koniocellular (K) or their equivalents] may be integrated within the blobs. Thus, blobs in all of these primates may perform a function that transcends visual niche differences. Third, our data show a species specific difference in the connections of the IIIB nonblobs; nonblobs receive indirect input via IV alpha from the LGN M pathway in bush babies but receive indirect input via IV beta from the LGN parvocellular (P) pathway in squirrel monkeys. These findings indicate that the role of nonblob zones within striate cortex differs from that of blob zones and takes into account visual niche differences.[Abstract] [Full Text] [Related] [New Search]