These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-salt diet upregulates activity and mRNA of renal Na(+)-K(+)-ATPase in Dahl salt-sensitive rats. Author: Nishi A, Celsi G, Aperia A. Journal: Am J Physiol; 1993 Mar; 264(3 Pt 2):F448-52. PubMed ID: 8384412. Abstract: We examined the effect of a high-salt (HS) diet on the regulation of renal cortical Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase) in young Dahl salt-sensitive (DS) and salt-resistant (DR) rats. The activity of Na(+)-K(+)-ATPase, determined in permeabilized proximal tubule segments, was similar in DS and DR rats on normal salt (NS) diet. HS diet resulted in a twofold increase in proximal tubule Na(+)-K(+)-ATPase activity in DS rats but not in DR rats. The mRNA abundance, which was also similar in DS and DR rats on NS diet, increased after 2 days on HS diet in both innervated and denervated kidneys from DS rats but had no effect in DR rats. The activity of Na(+)-K(+)-ATPase and the content of alpha 1- and beta-protein in cortical homogenate were similar in DS and DR rats on both NS and HS diets. Treatment with benserazide, an inhibitor of dopa decarboxylase, upregulated proximal tubule Na(+)-K(+)-ATPase activity and increased Na(+)-K(+)-ATPase mRNA in DR rats on HS diet. Taken together, these data indicate that there is a primary defect in the dynamic hormonal regulation of Na(+)-K(+)-ATPase activity in intact tubular cells, which might stimulate Na(+)-K(+)-ATPase transcription.[Abstract] [Full Text] [Related] [New Search]