These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation.
    Author: Nakamura K, Kusuoka H, Ambrosio G, Becker LC.
    Journal: Am J Physiol; 1993 Mar; 264(3 Pt 2):H670-8. PubMed ID: 8384419.
    Abstract:
    Although ATP derived from glycolysis represents only a small fraction of total myocardial ATP production, metabolic compartmentation may result in preferential use of glycolytic ATP for certain membrane activities, including pumping of Ca2+ from the cytoplasm. We tested this hypothesis by looking for evidence of Ca2+ overload in normoxic perfused rabbit hearts given iodoacetate (IAA, 50 microM) to block glycolysis and isoproterenol (Iso, 0.05 microM) to stimulate Ca2+ entry. The hearts beat isovolumically and were perfused with 16 mM glucose and 5 or 10 mM pyruvate (to preserve oxidative metabolism) in a superconducting magnet for 31P-nuclear magnetic resonance (NMR) measurements of high energy phosphates or 19F-NMR measurements of intracellular free Ca2+ concentration ([Ca2+]i). IAA by itself had no effect on left ventricular (LV) developed pressure, end-diastolic pressure, pressure-rate product, or tissue high-energy phosphates. During exposure to Iso, mean LV end-diastolic pressure increased from 10.7 to 49.3 mmHg in hearts pretreated with IAA (n = 7) but did not change in control hearts (n = 7). During Iso, there were substantial reductions in developed pressure, ATP, and phosphocreatine in IAA-treated hearts but not in control hearts. After exposure to IAA and Iso, a doubling of diastolic [Ca2+]i was observed with 19F-NMR. In IAA-treated hearts, reduction of perfusate Ca2+ concentration from 2.5 to 0.6 mM during Iso exposure (n = 6) prevented the mechanical dysfunction and decrease in high-energy phosphates. These findings suggest that glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation.
    [Abstract] [Full Text] [Related] [New Search]