These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of gelsolin function. Activation at low pH overrides Ca2+ requirement.
    Author: Lamb JA, Allen PG, Tuan BY, Janmey PA.
    Journal: J Biol Chem; 1993 Apr 25; 268(12):8999-9004. PubMed ID: 8386174.
    Abstract:
    The activation of gelsolin by calcium has been postulated to be involved in the receptor-mediated reorganization of the actin cytoskeleton, but cytoskeletal reorganization can also occur in cells with intracellular Ca2+ clamped at nanomolar levels. Fluorescence measurements using Fura-2 show that at pH 7.4, the Ca2+ requirement for gelsolin activation in vitro is higher than previously reported, with half-maximal activation of severing and nucleation occurring at 10 microM Ca2+. The Ca2+ requirement for gelsolin activity decreases at more acid pH and is approximately 3 microM at pH 6.5. At pH below 6.0, gelsolin no longer requires Ca2+ for activity and severs actin filaments, binds two actin monomers, and nucleates filament formation in EGTA-containing solutions. The pH-activated severing activity is inhibited by mixed lipid vesicles containing phosphatidylinositol 4,5-bisphosphate. A Ca(2+)-sensitive fragment consisting of the first 135 amino acids of human cytoplasmic gelsolin also demonstrates severing activity at pH < 6.0 in the absence of Ca2+. In contrast, the gelsolin homologs severin and villin maintain Ca2+ regulation of severing activity at low pH. These differences suggest that activation of gelsolin at low pH cannot be explained merely by destabilization of F-actin. The difference in diffusion constants of gelsolin measured at pH 5.5 and 6.5, as determined by dynamic light scattering, suggests that the molecule undergoes a shape change similar to that reported upon binding Ca2+ at neutral pH. These results suggest a mechanism by which gelsolin may be activated in vivo under conditions where Ca2+ transients do not occur.
    [Abstract] [Full Text] [Related] [New Search]