These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ventilatory and gas exchange dynamics in response to sinusoidal work. Author: Casaburi R, Whipp BJ, Wasserman K, Beaver WL, Koyal SN. Journal: J Appl Physiol Respir Environ Exerc Physiol; 1977 Feb; 42(2):300-1. PubMed ID: 838654. Abstract: The dynamic relationships between ventilation and gas exchange variables during exercise were determined utilizing frequency analysis techniques. Five subjects exercised on a cycle ergometer for 30 min at work rates which fluctuated sinusoidally between 25 W and 80% of the anaerobic threshold at sinusoidal periods of 0.7, 1,2,4,6, and 10 min. VE, VCO2, VO2, and HR were computed and displayed breath-by-breath. From these and steady-state response data, digital computer routines extracted amplitude and phase relations between each variable and the perturbing work load. These response characteristics were well described by first-order linear dynamics with time constants for VE, VCO2, VO2, and HR averaging 1.4, 1.2, 0.8, and 0.8 min, respectively. The time constants of VE and VCO2 were strongly correlated among subjects (r = 0.97). Further, there was no evidence that neural afferents from the exercising limbs induced fast components in the ventilatory response to these forcings. These results are consistent with the hypothesis that exercise hyperpnea is linked to metabolism via carbon dioxide production.[Abstract] [Full Text] [Related] [New Search]