These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid hormone (PTH)/PTH-related peptide receptor. Author: Schipani E, Karga H, Karaplis AC, Potts JT, Kronenberg HM, Segre GV, Abou-Samra AB, Jüppner H. Journal: Endocrinology; 1993 May; 132(5):2157-65. PubMed ID: 8386612. Abstract: Identical complementary DNAs (cDNAs) that encode a 593-amino acid human PTH (PTH)/PTH-related peptide (PTHrP) receptor were isolated by hybridization techniques from two cDNA libraries which had been constructed from human kidney and human osteoblast-like osteosarcoma cells (SaOS-2). Northern blot analysis of total RNA from human bone- and kidney-derived tissue revealed one single major messenger RNA species of about 2.5 kilobases in both tissues. The human PTH/PTHrP receptor has 91% and 81% identity, respectively, with the previously cloned rat and opossum receptors, indicating a high degree of conservation among mammals. Despite this striking degree of amino-acid conservation, the human PTH/PTHrP receptor has several unique biological properties when transiently expressed in COS-7 cells. The apparent dissociation constants for [Nle8,18,Tyr34] bovine PTH(1-34) amide [bPTH(1-34)] are similar for the human and the rat receptor (approximately 8 vs. approximately 15 nM) whereas [Tyr36]PTHrP(1-36) amide has a slightly lower affinity for the human (15-40 nM) than for the rat receptor (approximately 15 nM). Both ligands stimulate efficiently and with similar efficacy the accumulation of intracellular cAMP. The affinities for the antagonists [Nle8,18,Tyr34] bPTH(3.34) amide [bPTH(3-34)] and in particular for [Nle8,18,Tyr34] bPTH(7-34) amide [bPTH(7-34)] are considerably higher for the human receptor, e.g. approximately 8 nM vs. 30 nM for bPTH(3-34) and approximately 100 nM vs. 5000 nM for bPTH(7-34), respectively. Similar biological findings were previously attributed to differences in species- and/or organ-specific PTH/PTHrP receptors. The expression of the recombinant, highly homologous rat and human receptors in a uniform environment indicate that the moderate differences in the primary receptor structure have profound consequences for the receptor binding affinity of amino-terminally truncated PTH analogs. Furthermore, the molecular cloning of identical cDNAs encoding a human PTH/PTHrP receptor from the two major target organs for PTH, bone and kidney, provides strong evidence for one single PTH/PTHrP receptor in both organs, although additional and/or alternatively spliced receptors cannot be excluded.[Abstract] [Full Text] [Related] [New Search]