These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence that stimulation of plasma-membrane Ca2+ inflow is an early action of glucagon and dibutyryl cyclic AMP in rat hepatocytes.
    Author: Bygrave FL, Gamberucci A, Fulceri R, Benedetti A.
    Journal: Biochem J; 1993 May 15; 292 ( Pt 1)(Pt 1):19-22. PubMed ID: 8389124.
    Abstract:
    The ability of glucagon (1 nM) and of dibutyryl cyclic AMP (50 microM) to increase cytosolic free Ca2+ concentration ([Ca2+]i) in Fura-loaded rat hepatocytes was examined in a system wherein Ca2+ inflow was induced by the re-admission of excess Ca2+ to a nominally Ca(2+)-free medium. An increase in [Ca2+]i did not occur in the absence of either agonist, but did so after co-addition of either agonist with Ca2+. Increasing the time between addition of dibutyryl cyclic AMP (or of glucagon) and Ca2+ led to increases in [Ca2+]i; half-maximal and maximal increases were observed at 0 s (i.e. at co-addition) and 5-7 s respectively. Dibutyryl cyclic AMP and Ca2+ each exhibited a concentration-dependence when their respective concentrations were changed for a fixed time interval between additions. Half-maximal and maximal effects were obtained with 30 microM and 50 microM dibutyryl cyclic AMP and with 0.5 mM and approx. 1 mM Ca2+ respectively. The data demonstrate an early action of glucagon and dibutyryl cyclic AMP on [Ca2+]i. It is argued that the agonist-induced rise in [Ca2+]i results from an increase in plasma-membrane Ca2+ inflow, an effect that appears to occur much earlier than that on mobilization of internal stores of Ca2+.
    [Abstract] [Full Text] [Related] [New Search]