These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1.
    Author: Quinlivan EB, Holley-Guthrie EA, Norris M, Gutsch D, Bachenheimer SL, Kenney SC.
    Journal: Nucleic Acids Res; 1993 Jul 11; 21(14):1999-2007. PubMed ID: 8393562.
    Abstract:
    Disruption of Epstein-Barr virus (EBV) latency is mediated through the activation of the viral immediate-early proteins, BZLF1 (Z) and BRLF1 (R).i.; (Chevallier-Greco, A., et al., (1986) EMBO J., 5, 3243-9; Countryman, and Miller, G. (1985) Proc. Natl. Acad. Sci. USA, 82, 4085-4089). We have previously demonstrated that these proteins cooperatively activate the EBV early promoter BMRF1 in lymphoid cells but not in epithelial cells. Although cooperative transactivation by these proteins has been demonstrated with a number of EBV promoters, the mechanism of this interaction is not well understood. We now show that the cooperative activation of the BMRF1 promoter by Z-plus-R requires an intact R binding site and at least one functional Z response element (ZRE). Despite the presence of an R binding site, the BMRF1 promoter is only moderately responsive to R alone in either HeLa or Jurkat cells. Efficient activation of the BMRF1 promoter by Z alone in HeLa cells requires two ZREs (located at -59 and -106), whereas two additional Z binding sites (located at -42 and -170) contribute very little to Z-induced activation. In the absence of ZREs, Z acted as a repressor of R-induced transactivation. These observations, along with observations made by other investigators (Giot, J.F. et al., (1991) Nucleic Acids Res., 19, 1251-8), suggest that Z-plus-R cooperative activation is dependent upon 1) direct binding by R and Z to responsive promoter elements and 2) contributions by cell-specific factors.
    [Abstract] [Full Text] [Related] [New Search]