These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Na+/H+ exchange in human lymphocytes and platelets in chronic and subacute metabolic acidosis.
    Author: Reusch HP, Reusch R, Rosskopf D, Siffert W, Mann JF, Luft FC.
    Journal: J Clin Invest; 1993 Aug; 92(2):858-65. PubMed ID: 8394388.
    Abstract:
    The effect of acid-base disturbances on sodium/proton (Na+/H+) exchange has been examined in animal models; however, few data are available from human studies. To test the effect of metabolic acidosis on Na+/H+ exchange in man, as well as to examine the relationship between Na+/H+ exchange and cytosolic calcium ([Ca2+]i), we measured both variables in patients with decreased renal function with mild metabolic acidosis (pH 7.34 +/- 0.06), in normal control subjects (pH 7.41 +/- 0.02), and in subjects before (pH 7.40 +/- 0.01), and after (pH 7.26 +/- 0.04) ammonium chloride (NH4Cl) 15 g for 5 d. Lymphocytes and platelets were loaded with the cytosolic pH (pHi) indicator 2'-7'-bis(carboxyethyl)-5,6-carboxyfluorescein and acidified to pH approximately 6.6 with propionic acid. To quantitate Na+/H+ exchange, dpHi/dt was determined at 1 min. [Ca2+]i was measured with fura-2. Na+/H+ exchange was significantly increased only in lymphocytes of patients with renal insufficiency. Neither intracellular pH (pHi) nor [Ca2+]i was different from controls. NH4Cl resulted in a significant increase in Na+/H+ exchange in lymphocytes, but not in platelets of normal subjects. Values of pHi and [Ca2+]i in either cell type remained unaffected. Since metabolic acidosis influenced Na+/H+ only in lymphocytes, but not in platelets, it is possible that protein synthesis may be involved in increasing Na+/H+ exchange.
    [Abstract] [Full Text] [Related] [New Search]