These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolism of 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human neutrophils. Author: Powell WS, Gravelle F, Gravel S, Hashefi M. Journal: J Lipid Mediat; 1993; 6(1-3):361-8. PubMed ID: 8395251. Abstract: We have previously shown that human polymorphonuclear leukocytes (PMNL) convert 6-trans isomers of leukotriene B4 (LTB4) to 6,11-dihydro metabolites (Powell and Gravelle (1988) J. Biol. Chem. 263, 2170-2177). In the present study, we have shown that the first step in the formation of these dihydro metabolites is oxidation of the 5-hydroxyl group to a 5-oxo group, which is catalyzed by an NADP(+)-dependent microsomal dehydrogenase enzyme. All the dihydroxyeicosanoids we investigated which contained a 5(S)-hydroxyl group followed by a 6-trans double bond were good substrates for this reaction. However, LTB4, which contains a 6-cis double bond, was not metabolized to any detectable 5-oxo products. The preferred substrate for the dehydrogenase reaction is 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid (5(S)-HETE), which has a Km of about 0.2 microM, compared to approx. 0.9 microM for 12-epi-6-trans-LTB4. In contrast to 5(S)-HETE, 5(R)-HETE as well as a variety of positional isomers of 5(S)-HETE are not metabolized to significant extents by the PMNL dehydrogenase. 5-Oxo-ETE and 5-oxo-15-hydroxy-ETE, which are formed from 5(S)-HETE and 5,15-diHETE, respectively, by this pathway, are potent chemotactic agents for human neutrophils, and raise intracellular calcium levels in these cells.[Abstract] [Full Text] [Related] [New Search]