These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heterogeneity and probabilistic binding contributions to receptor-mediated cell detachment kinetics. Author: Saterbak A, Kuo SC, Lauffenburger DA. Journal: Biophys J; 1993 Jul; 65(1):243-52. PubMed ID: 8396454. Abstract: Biospecific cell adhesion is mediated by receptor-ligand bonds. Early theoretical work presented a deterministic analysis of receptor-mediated cell attachment and detachment for a homogeneous cell population. However, initial comparison of a deterministic framework to experimental detachment profiles of model "cells" (antibody-coated latex beads) did not show qualitative or quantitative agreement (Cozens-Roberts, C., D.A. Lauffenburger, and J.A. Quinn. 1990. Biophys. J. 58:857-872). Hence, we determine the contributions of population heterogeneity and probabilistic binding to the detachment behavior of this experimental system which was designed to minimize experimental and theoretical complications. This work also corrects an error in the numerical solution of the probabilistic model of receptor-mediated cell attachment and detachment developed previously (Cozens-Roberts, C., D.A. Lauffenburger, and J.A. Quinn. 1990. Biophys J. 58:841-856). Measurement of the population distribution of the number of receptors per bead has enabled us to explicitly consider the effect of receptor number heterogeneity within the cell-surface contact area. A deterministic framework that incorporates receptor number heterogeneity qualitatively and quantitatively accounts in large part for the model cell detachment data. Using measured and estimated parameter values for the model cell system, we estimate that about 90% of the observed kinetic detachment behavior originates from heterogeneity effects, while about 10% is due to probabilistic binding effects. In general, these relative contributions may differ for other systems.[Abstract] [Full Text] [Related] [New Search]