These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A role for protein kinase C-epsilon in angiotensin II stimulation of phospholipase D in rat renal mesangial cells. Author: Pfeilschifter J, Huwiler A. Journal: FEBS Lett; 1993 Oct 04; 331(3):267-71. PubMed ID: 8397115. Abstract: The role of Ca2+ and protein kinase C (PKC) in the regulation of phosphatidylcholine-hydrolyzing phospholipase D (PLD) was investigated in angiotensin II-stimulated mesangial cells. Elevation of cytosolic free Ca2+ by the calcium ionophore, A23187, or the Ca(2+)-ATPase inhibitor, thapsigargin, slightly increased PLD-stimulated phosphatidylethanol formation. However, chelation of cytosolic Ca2+ with high concentrations of quin 2 did not attenuate angiotensin II-induced phosphatidylethanol production, thus suggesting that Ca2+ is not crucially involved in agonist-stimulated PLD activation. Stimulation of PKC by phorbol esters increased PLD activity in mesangial cells. Down-regulation of PKC-alpha and -delta isoenzymes by 8 h phorbol ester treatment still resulted in full PLD activation. In contrast, a 24 h treatment of mesangial cells with phorbol ester, a regimen that also causes depletion of PKC-epsilon, abolished angiotensin II-evoked phosphatidylethanol formation. In addition, the selective PKC inhibitor, calphostin C, attenuated hormone-induced PLD activity. In summary, these data suggest that angiotensin II stimulation of phospholipase D appears to involve the PKC-epsilon isoenzyme, activated by DAG derived from phosphoinositide hydrolysis.[Abstract] [Full Text] [Related] [New Search]