These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GPI- and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity.
    Author: Kemble GW, Henis YI, White JM.
    Journal: J Cell Biol; 1993 Sep; 122(6):1253-65. PubMed ID: 8397215.
    Abstract:
    We investigated the influence of a glycosylphosphatidylinositol (GPI) anchor on the ectodomain of the influenza hemagglutinin (HA) by replacing the wild type (wt) transmembrane and cytoplasmic domains with a GPI lipid anchor. GPI-anchored HA (GPI-HA) was transported to the cell surface with equal efficiency and at the same rate as wt-HA. Like wt-HA, cell surface GPI-HA, and its ectodomain released with the enzyme PI-phospholipase C (PI-PLC), were 9S trimers. Compared to wt-HA, the GPI-HA ectodomain underwent additional terminal oligosaccharide modifications; some of these occurred near the receptor binding pocket and completely inhibited the ability of GPI-HA to bind erythrocytes. Growth of GPI-HA-expressing cells in the presence of the mannosidase I inhibitor deoxymannojirimycin (dMM) abrogated the differences in carbohydrate modification and restored the ability of GPI-HA to bind erythrocytes. The ectodomain of GPI-HA produced from cells grown in the presence or absence of dMM underwent characteristic low pH-induced conformational changes (it released its fusion peptides and became hydrophobic and proteinase sensitive) but at 0.2 and 0.4 pH units higher than wt-HA, respectively. These results demonstrate that although GPI-HA forms a stable trimer with characteristics of the wt, its structure is altered such that its receptor binding activity is abolished. Our results show that transmembrane and GPI-anchored forms of the same ectodomain can exhibit functionally important differences in structure at a great distance from the bilayer.
    [Abstract] [Full Text] [Related] [New Search]