These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of pH and denaturants on the folding and stability of murine interleukin-6. Author: Ward LD, Zhang JG, Checkley G, Preston B, Simpson RJ. Journal: Protein Sci; 1993 Aug; 2(8):1291-300. PubMed ID: 8401214. Abstract: The conformation and stability of a recombinant mouse interleukin-6 (mIL-6) has been investigated by analytical ultracentrifugation, fluorescence spectroscopy, urea-gradient gel electrophoresis, and near- and far-ultraviolet circular dichroism. On decreasing the pH from 8.0 to 4.0, the tryptophan fluorescence of mIL-6 was quenched 40%, the midpoint of the transition occurring at pH 6.9. The change in fluorescence quantum yield was not due to unfolding of the molecule because the conformation of mIL-6, as judged by both urea-gradient gel electrophoresis and CD spectroscopy, was stable over the pH range 2.0-10.0. Sedimentation equilibrium experiments indicated that mIL-6 was monomeric, with a molecular mass of 22,500 Da over the pH range used in these physicochemical studies. Quenching of tryptophan fluorescence (20%) also occurred in the presence of 6 M guanidine hydrochloride upon going from pH 7.4 to 4.0 suggesting that an amino acid residue vicinal in the primary structure to one or both of the two tryptophan residues, Trp-36 and Trp-160, may be partially involved in the quenching of endogenous fluorescence. In this regard, similar results were obtained for a 17-residue synthetic peptide, peptide H1, which corresponds to an N-terminal region of mIL-6 (residues Val-27-Lys-43). The pH-dependent acid quenching of endogenous tryptophan fluorescence of peptide H1 was 30% in the random coil conformation and 60% in the presence of alpha-helix-promoting solvents. Replacement of His-33 with Ala-33 in peptide H1 alleviated a significant portion of the pH-dependent quenching of fluorescence suggesting that the interaction of the imidazole ring of His-33 with the indole ring of Trp-36 is a major determinant responsible for the quenching of the endogenous protein fluorescence of mIL-6.[Abstract] [Full Text] [Related] [New Search]