These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn.
    Author: Sorkin LS, McAdoo DJ, Willis WD.
    Journal: Brain Res; 1993 Jul 30; 618(1):95-108. PubMed ID: 8402183.
    Abstract:
    Stimulation in the nucleus raphe magnus (NRM) inhibits transmission of nociceptive information within the spinal cord through activation of bulbospinal pathways. This study used microdialysis in combination with high pressure liquid chromatography to measure the release of serotonin (5HT) and several amino acids, including glutamate, aspartate and glycine, from the lumbar dorsal horn during electrical stimulation within the NRM in the alpha-chloralose anesthetized cat. Observed release of putative neurotransmitters was correlated with inhibition of nociceptive projection neurons recorded from sites within 800 microns rostral or caudal to the dialysis fiber. NRM stimulus parameters considered to preferentially activate myelinated fibers caused inhibition of nociceptive evoked activity, and increased the release of excitatory amino acids and glycine within the spinal cord, with no detectable release of 5HT. When pulse widths were lengthened and unmyelinated fibers were also activated, increases in 5HT in the spinal dialysate were observed as well. Strychnine administered through the dialysis fiber (0.02-1 mM) antagonized NRM-induced inhibition when 5HT release was not detected. Inhibition produced by stimulation that increased 5HT concentrations was relatively strychnine resistant. These results point to a raphe-spinal inhibitory pathway that is not dependent on 5HT, the activation of which results in the spinal release of glycine.
    [Abstract] [Full Text] [Related] [New Search]