These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estrogen inhibits the growth of estrogen receptor-negative, but not estrogen receptor-positive, human mammary epithelial cells expressing a recombinant estrogen receptor. Author: Zajchowski DA, Sager R, Webster L. Journal: Cancer Res; 1993 Oct 15; 53(20):5004-11. PubMed ID: 8402691. Abstract: Estrogen is essential for the growth of the normal mammary gland and most estrogen receptor (ER)-positive mammary carcinomas. To better understand the differences between the estrogen response pathways in normal and tumor cells, we have stably transfected ER-negative immortal, nontumorigenic human mammary epithelial cells and ER-negative breast cancer cells with an ER-encoding expression vector. Unexpectedly, estrogen treatment (1.0 nM) inhibited the proliferation of ER-transfected nontumorigenic and tumor-derived cells. The control transfectants and parental cells exhibited no response to estrogen concentrations as high as 1.0 microM. This inhibitory effect was attributed to a decreased growth rate and a perturbation of the cell cycle distribution by estrogen treatment of the ER transfectants. The inhibitory response was blocked by cotreatment with the antiestrogen ICI 164,384 as predicted for a pure antagonist of estrogen action. However, treatment with the antiestrogen hydroxytamoxifen caused growth inhibition, implying that hydroxytamoxifen acts as an agonist of estrogen action in ER-transfected cells. Since estrogen is a mitogenic and not a growth-inhibitory stimulus for ER-positive breast cancers and cell lines, we tested the effect of constitutive, high level expression of the ER in ER-positive tumor cells. Stable transfection of ER-positive MCF-7 and T47D cells with the ER expression vector yielded cells with varying amounts of ER. At ER levels comparable to those found in the ER-negative transfected cells, the MCF-7 and T47D ER transfectants were not inhibited by estrogen. These data suggest that ER-positive breast cancer cells can tolerate higher constitutive levels of ER expression than ER-negative cells. The mechanism by which this is accomplished may be an essential step in the process which yields ER-positive tumors.[Abstract] [Full Text] [Related] [New Search]