These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential interleukin-1 receptor antagonism on pancreatic beta and alpha cells. Studies in rodent and human islets and in normal rats. Author: Zumsteg U, Reimers JI, Pociot F, Mørch L, Helqvist S, Brendel M, Alejandro R, Mandrup-Poulsen T, Dinarello CA, Nerup J. Journal: Diabetologia; 1993 Aug; 36(8):759-66. PubMed ID: 8405744. Abstract: The monokines interleukin-1 alpha and -beta have been implicated as effector molecules in the immune-mediated pancreatic beta-cell destruction leading to insulin-dependent diabetes mellitus. Here we investigated the effects of interleukin-1 receptor antagonism on insulin and glucagon release of rat, mouse and human islets exposed to recombinant human interleukin-1 beta, and on interleukin-1 beta induced changes in blood glucose, serum insulin and serum glucagon levels in Wistar Kyoto rats. The interleukin-1 receptor antagonist reduced the co-mitogenic effect of interleukin-1 beta on mouse and rat thymocytes with a 50% inhibitory concentration of 10- and 100-fold molar excess, respectively. Complete inhibition was obtained with a 100-1,000-fold molar excess. However, at a 100-fold molar excess the interleukin-1 receptor antagonist did not antagonise the potentiating effect of interleukin-1 beta on rat islet insulin accumulation during 3 and 6 h of exposure or of interleukin-1 beta-induced inhibition of insulin release after 24 h. In contrast, interleukin-1 beta-stimulated islet glucagon release was completely antagonised by a 100-fold molar excess of interleukin-1 receptor antagonist. A 10,000-fold molar excess of interleukin-1 receptor antagonist was needed to antagonise interleukin-1 beta stimulatory and inhibitory effects on rat beta-cell function in vitro. A 100-fold excess of interleukin-1 receptor antagonist could not counteract interleukin-1 beta effects on mouse and human beta cells, excluding species difference in the efficacy of the human interleukin-1 receptor antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]