These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Saliva-binding region of Streptococcus mutans surface protein antigen.
    Author: Nakai M, Okahashi N, Ohta H, Koga T.
    Journal: Infect Immun; 1993 Oct; 61(10):4344-9. PubMed ID: 8406823.
    Abstract:
    A 190-kDa surface protein antigen (PAc) of Streptococcus mutans binds to human salivary components. For detection of specific binding of the PAc protein to human salivary components, a simple sandwich assay was used. Microtiter plates precoated with recombinant PAc (rPAc), PAc fragments, or S. mutans whole cells were allowed to react with human whole saliva and then were incubated with biotinylated rPAc. The biotinylated rPAc bound to salivary components was detected by use of alkaline phosphatase-conjugated streptavidin and p-nitrophenylphosphate. In this assay, the binding of whole cells of S. mutans and purified rPAc to salivary components was confirmed. For determination of a saliva-binding region of the PAc molecule, 14 truncated PAc fragments were constructed by use of the polymerase chain reaction and an expression vector, pAX4a+. The binding of these truncated PAc fragments to human salivary components was determined by the sandwich assay. Among the truncated PAc fragments, fragments corresponding to residues 39 to 864 and residues 39 to 1000 of PAc showed a high ability to bind to salivary components. Shorter recombinant fragments corresponding to residues 39 to 217, residues 200 to 481, residues 470 to 749, and residues 688 to 864 did not exhibit any binding ability. The fragment that corresponds to a proline-rich repeating region (residues 828 to 1000) bound directly to the PAc protein. These results suggest that residues 39 864 of the PAc molecule are important in the binding of the surface protein to human salivary components, and the proline-rich repeating region of the PAc protein may contribute to spontaneous self-aggregation of the PAc protein.
    [Abstract] [Full Text] [Related] [New Search]